In the News

Light Reading

Azimuth Ties LTE Lab Testing to the Field

Light Reading, September 04, 2013

Azimuth Systems wants to revolutionize how wireless operators and device makers test new LTE devices, so it’s launching a platform that it claims will give them the entire picture, from the lab to the field and from the network to the device (and the apps on it).

 

RCR Wireless

Azimuth launches integrated test solution for LTE devices

RCR Wireless, September 04, 2013

Azimuth Systems introduced a testing solution focused on user experience and device performance, as well as assessing network conditions.

 

edn_logo2902

Slideshow: LTE test equipment

EDN, October 19, 2012

The ACE MX2 MIMO channel emulator from Azimuth delivers real world test capability for MU-MIMO, InterRAT, and carrier aggregation deployments. The emulator features built real time fading capabilities enable users to recreate a variety of typical MIMO scenarios for accurate performance and interoperability testing, with up to 64 channels available in a scalable configuration. Advanced geometric modeling capabilities enable real world test with the antenna models necessary for testing of leading edge base stations and full dynamic channel modeling.

 

Replicating Dynamic Field Environments in the Lab for More Effective Regression Testing

Wireless Design & Development, October 4, 2012

In today’s complex wireless ecosystem, as our mobile devices have continued to evolve, users have come to expect continually improving functionality. Accordingly, chipset vendors, device and infrastructure OEMs, and carriers are challenged to keep up if not accelerate the pace of innovation while maintaining high product quality. Their design and development teams are pressed for rapid and efficient development — but must still ensure that the final product meets end-user requirements.

 

MIMO Variations Mean Multi-Test Solutions

Electronic Design, September 6, 2012 issue

The many facets and evolving nature of multi-input, multi-output (MIMO) antenna systems have test companies scrambling to stay ahead of industry requirements. Depending on where the tests are performed, from academia and industry R&D labs to product qualification and manufacturing, or from ICs to basestations to handsets, the requirements vary considerably. The latest test and measurement techniques to verify leading-edge performance in research labs as well as cost-effective production testing for the U.S. and other regions are among the recent changes.

 

More Effective LTE Performance  Testing with “Field to Lab” Methods

Telecom India Daily, September 2012

Azimuth’s Erik Org is included in the Viewpoint section (page 12).

Field to Lab tools can not only make it easier to run the tests but may also provide tools to visually compare and evaluate the RF conditions.

 

Improving Wireless Military Communications Systems Using Real World Field-to-Lab Testing

Microwave Journal, May 10, 2012

Seamless communication is critical to the successful execution of military operations, but ensuring reliability from communications systems and devices is rapidly becoming ever more difficult. More protocols, more frequency bands and more applications all add to the complexity of developing and testing military communications equipment so that it performs with an advanced degree of reliability in the field – and ensures both mission success as well as the safety of the military personnel that depend on it. However, ensuring the latest tactical radio systems consistently perform as expected presents a number of unique challenges given dangerous battlefield conditions and the often harsh, remote terrains where military communications systems must operate.

Tech Exchange – Testing Today’s Devices

Wireless Design & Development, March 29, 2012

Erik Org, Azimuth’s senior marketing manager, is included  in Wireless Design & Development’s Tech Exchange on Testing Today’s Devices.

 

“Field-to-Lab” Infuses The Real World Into Mobile-Device Virtual Testing 

Mobile Dev & Design, December 2, 2011

Across the wireless ecosystem, new product development teams for chipset vendors, device and infrastructure OEMs, and carriers face a host of challenges. Fueling the fire is the proliferation of multi-antenna (MIMO) designs, which intensifies the complexity when testing of today’s OFDM-based mobile devices. To shorten development times, it’s essential to incorporate real-world test methodologies when comparing performance results from the beginning to the end of the complete design cycle for a wide variety of engineering teams and labs (including chipset development, handset development, network interoperability, and acceptance testing.

 

 

 

Field-to-Lab Testing Improves Wireless Designs

Evaluation Engineering, September 2011

Testing today’s advanced smartphones and mobile devices involves many phases. The final predeployment test typically is device validation, commonly performed under the field conditions where the subscribers will actually use them. However, device field testing across diverse conditions of terrain, population density, physical location, and motion is extremely time-consuming and costly and lacks repeatability.

Field-to-Lab Testing Equals Better Real-World Performance for Mobile Devices

Wireless Design & Development, May/June 2011

Real-world drive testing is very expensive; lab testing is much less expensive and faster — provided that the real world can be emulated with sufficient fidelity.  Field-to-Lab allows service providers, equipment manufacturers, and chipset vendors to take real-world drive test logs collected from around the globe, and replay the data in the ACE MX MIMO channel emulator in order to effectively recreate actual field conditions in any lab, during any phase of the equipment design and qualification cycle for equipment benchmarking, troubleshooting or many other purposes.

 

 

Advanced MIMO Over-the-Air Testing Methodology to Test True Device Performance 

Antenna Systems & Technology, Spring 2011

With the recent deployments of live LTE networks and ongoing WiMAX deployments worldwide, today’s new mobile devices are required to deliver higher levels of throughput than ever before. Multiple Input, Multiple Output (MIMO) technology is used as the foundation of 4G radio technologies including LTE and WiMAX to enhance the overall performance of radio transmitters and receivers with respect to the effects of the air interface. Multiple transmit and receive data paths are used in MIMO systems to provide significant increases in throughput and robustness by exploiting the characteristics of the radio channel.

Field-To-Lab’ Gives Wireless Testing a Real-World Flavor

Mobile Dev & Design, December 13, 2010

Cost and time savings, plus the ability to test at any stage in the development cycle and at multiple locations using “real-world” data, makes the field-to-lab solution an essential tool for improving pre-deployment mobile infrastructure and device qualification and for lab-based replication and resolution of field-reported issues.

 


Evaluating 4G Performance with New MIMO OTA Test

Evaluation Engineering, August 2010

A new solution for MIMO OTA testing combines a channel emulator with a reverberation chamber to create a shielded environment for testing EMC and other EM investigations that achieves MIMO throughput performance testing and enables accurate good/bad wireless MIMO device performance prediction.

 

 

LTE vs. WiMAX – A Test Perspective

Wireless Design & Development
, May/June 2010

The marketing battle between WiMAX and LTE is raging in an effort to declare which is the best solution, and vendors and service providers are racing to put stakes in the ground to claim the first or most predominant network delivering wireline speeds.

 

Ensure Your Performance Meets Expectations in the 4G Evolution

Mobile Dev & Design, February 12, 2010

Testing LTE and WiMAX systems with MIMO becomes the critical differentiator for performance testing.

 

 

 

Multi-Antenna Techniques Require Thorough Testing Solutions

Electronic Design, September 10, 2009

Testing MIMO wireless communications takes on a new perspective from previous generations of short- and long-range wireless solutions. Central to this testing is a tool called a channel emulator. It can reproduce dynamically changing transmission conditions to stress the MIMO scenario and ensure optimal performance and interoperability.

Consumer Satisfaction with Fixed-Mobile Convergence Starts with Mobility Performance Testing

EDN Asia, June 2009

The universal demand for constant access to voice and data communication, along with the increasingly rich availability of Wi-Fi (wireless-fidelity) and cellular connectivity, is driving a widespread demand for converged Wi-Fi/cellular applications and services. Promising better access to voice and data services as well as lower communication costs, FMC (fixed/mobile convergence) has the potential to greatly affect the world of communications.

 

 

Testing LTE and WiMAX OFDM/MIMO-Based Systems

Wireless Design & Developmen
t, April 2009

The introduction of new radio technologies, like OFDM and MIMO, in LTE and WiMAX systems has created the need for new types of test equipment.

edn_logo2902

Driving the Convergence Between Fixed and Mobile Communications into the Mainstream   

EDN, March 2009

Sustainable consumer demand for converged Wi-Fi-plus-cellular applications and services will depend on carrier-grade FMC services that deliver a good end-user experience. Before you can achieve these benefits, however, FMC products need to deliver the same quality as today’s cellular-only services.

 

 

Testing LTE and WiMAX OFDM/MIMO-Based Systems

Wireless Design & Development, March 2009

Mobile wireless ystems have dramatically evolved over the past two decades. Commercial wireless networks in the early 1980s provided low-capacity, voice-only services, whereas, in today’s world, a growing number of mobile wireless networks are evolving to support higher capacity throughput for data-hungry applications.

Embedded-Computing-Design

Wireless Testing: The Critical Link for Reliable 4G Communications

Embedded Computing Design, August 2008

4G wireless technologies and standards including WiMAX and Long-Term Evolution (LTE) have become the future hope of the industry, promising throughput and range to support an expanded set of capabilities.

Adapting Next Generation Applications to Universal Radio Environments

Wireless Design & Development, July 2008

4G wireless, including the 3GPP Long Term Evolution (LTE) standard and WiMAX based on the expected 802.16m standard, promises to deliver the wide range of services that users demand, but it requires complex RF technologies to achieve its goals.

 

 

Fixed-Mobile Convergence Mobility Performance Testing

Evaluation Engineering, June 2008

The rich availability of Wi-Fi connectivity and the universal demand for constant access to voice and data communications are driving consumer and enterprise demand for converged Wi-Fi/cellular applications and services.

Comprehensive WiMAX and Wi-Fi Product Design Demands Effective Channel Emulation

Microwave Engineering Europe, April 2008

As WiMAX and Wi-Fi become increasingly popular, the stakes increase for vendors servicing the market and the engineers developing new products. Both standards are in the midst of a MIMO technology transition, providing further incentive to find new design and verification tools that can accelerate development of higher performance products.

Effective Channel Emulation for WiMAX, Wi-Fi Products

Nikkei Electronics Asia, March 2008

Next-generation mobile wireless technology represents an important step in the drive to broaden access to high-speed wireless services. In-lab controlled channel emulation is central to accurately characterizing the effect of multi-channel RF interactions on the conformance, performance and interoperability of WiMAX and Wi-Fi systems for both MIMO and SISO (single input single output) implementations.

 

 

Functional MIMO Testing For 802.11n

Evaluation Engineering, August 2007

With the promise of greater throughput and range capabilities, 802.11n will enable new voice, video, and data applications that demand greater performance. Proper test and measurement of device and network capabilities are critical to ensure the success of this growing market.

Effectively Testing MIMO-Enabled Wireless Devices

RF Design, August 2007

Multiple input, multiple output (MIMO) technology, the foundation for the next generation of Wi-Fi products, leverages multiple transmit and receive antennas to deliver greater wireless throughput and range, enabling ubiquitous high-speed voice, video and data services. Today, three basic methods can be used to test MIMO-enabled devices.

Critical WiMAX Product Design and Testing Demands Effective Channel Emulation

RF Design , March 2007

Multiple-input multiple-output (MIMO) technology is the foundation of the next generation of mobile WiMAX products. In lab-controlled channel emulation, using a channel emulator is required to accurately characterize the effect of multichannel RF interactions on the conformance, performance and interoperability of MIMO and single-input single-output (SISO) WiMAX systems.

Meeting the Testing Challenges of Wi-Fi-enabled Devices

RF Design, January 2007

Familiarity with the guidelines and methodology of the standardized approach used by the Wi-Fi Alliance test engine for the certification of Wi-Fi-enabled application-specific devices (ASDs) can streamline the certification process and facilitate the performance testing of these wireless designs.